Linking KNP Instructional Resources to Add+VantageMR®

Add+VantageMR ${ }^{\circledR}$ is a professional development and set of assessment interviews created by the US Math Recovery Council. For more information about this training, please go to https:// www.mathrecovery.org. Through AVMR, teachers learn numeracy progressions as well as assessment tools for determining a student's progress along these progressions.

The activities in the KNP bank of Instructional Resources are aligned to the AVMR progressions in all strands except Fractions. The prefix indicates the targeted strand and the suffix indicates the targeted level. For example, activity Nb 1109.5 targets backward counting and is designed to move a student from AVMR level 4 to level 5 in backward counting.

Numeracy Strand
The prefix indicates the numeracy strand: Number Words and Numerals
[Nf] - Number words forward
[Nb] - Number words backward
[Ni] - Numeral ID
[A] Addition and Subtraction
[S] Structuring within 5, 10 or 20
[M] Multiplication and Division
[T] Base Ten Arithmetical Strategies
[F] Fractions (not aligned to AVMR)

Each strand and level has been assigned a color which can be seen in our Numeracy Progressions Chart. The color system was developed by teachers to organize activities and instructional materials. The colors are used in the KNP on the student instructions page for easy identification by both teacher and student. Some teachers additionally use colored stickers, colored folders, and/or labeled bins to make identifying the color of an activity easier.

For example, all Nb level 4 activities are designated red and target backward counting within $30 . \mathrm{Nb}$ level 5 activities are designated blue and target backward counting within 100. Many teachers find that the color system lets them easily distinguish between these activities, using the appropriate one for a specific student or group.

Students can also use the color system to track progress and select activities. For example, a teacher might have their Nb activities in a tub. Each student would be assigned a color depending on their current progress and would be given the freedom to choose any Nb activity in their designated color. It's important to note that a color in one strand does NOT indicate a student will be the same color in a different strand. Teachers with AVMR training will have the tools and knowledge to determine a student's point in each progression.

Resources for linking KNP and AVMR

AVMR teachers may find the following resources useful when using the KNP.

- Differentiation worksheets are organizers that link AVMR Constructs and Levels to KNP resources.
- Tub labels can be used for organizing materials.

Example of a Differentiation worksheet

Reminder of key components of this level in the AVMR progression

Indicates appropriate KNP activities. In this case, we recommend Structuring level 3 activities to move students FROM level 2 TOWARD Level 3

Space to either list students or make notes about instructional activities.

Structuring Numbers

Level 2
Needs to work on applying knowledge of structures of fivewise and pair-wise (five-plus and doubles) to:

- combine numbers in range 1 -

10 without counting

- partition numbers in range 1 -

10 without counting

WORK AT THIS LEVEL CULMINATES IN BARE-NUMBER TASKS (WITHOUT SUPPORTING MATERIALS)

Rellow: I am learning to count backward, starting at any number in the range 1 to 10.
Red: I am learning to count backward, starting at any number in the range 1 to 30 .
Blue: I am learning to count backward, starting at any number in the range 1 to 100.
Green: I am learning to count backward, starting at any number in the range 1 to
1000.
KCM

Rellow: I am learning to count backward, starting at any number in the range 1 to 10.
Red: I am learning to count backward, starting at any number in the range 1 to 30 .
Blue: I am learning to count backward, starting at any number in the range 1 to 100.
Green: I am learning to count backward, starting at any number in the range 1 to
1000.
KCM

Rellow: I am learning to count backward, starting at any number in the range 1 to 10.
Red: I am learning to count backward, starting at any number in the range 1 to 30 .
Blue: I am learning to count backward, starting at any number in the range 1 to 100.
Green: I am learning to count backward, starting at any number in the range 1 to
1000.
KCM

Rellow: I am learning to count backward, starting at any number in the range 1 to 10.
Red: I am learning to count backward, starting at any number in the range 1 to 30 .
Blue: I am learning to count backward, starting at any number in the range 1 to 100.
Green: I am learning to count backward, starting at any number in the range 1 to
1000.
KCM

Rellow: I am learning to count backward, starting at any number in the range 1 to 10.
Red: I am learning to count backward, starting at any number in the range 1 to 30 .
Blue: I am learning to count backward, starting at any number in the range 1 to 100.
Green: I am learning to count backward, starting at any number in the range 1 to
1000.
KCM

Kentucky Numeracy Project Instructional Resources Numeracy Progressions

Numeracy Targets and Colors for each Strand and Level

Forward counting* Nf	Nf__. 0 Rote counting 1 to 5	Nf__. 1 Rote counting 1 to 10	Nf__. 2 Emerging forward counting from any number within 10	Nf__. 3 Facile forward counting from any number within 10	Nf _. 4 Facile forward counting from any number within 30	Nf__. 5 Facile forward counting from any number within 100	Nf__. 6 Facile forward counting from any number within 1,000
Backward counting* Nb	Nb__. 0 Rote counting backward 5 to 1	$\mathrm{Nb} \ldots .1$ Rote counting backward 10 to 1	Nb _. 2 Emerging backward counting from any number within 10	$\mathrm{Nb} _.3$ Facile backward counting from any number within 10	Nb__. 4 Facile backward counting from any number within 30	$\mathrm{Nb} \ldots .5$ Facile backward counting from any number within 100	$\mathrm{Nb} _.6$ Facile backward counting from any number within 1,000

Numeral Identification* Ni	Ni _. 0 Identify numerals to 1 to 5	Ni _. 1 Identify numerals 0 to 10	$\mathrm{Ni} \quad .2$ Identify numerals 0 to 20	Ni _. 3 Identify numerals 0 to 100	$\mathrm{Ni}_{1} .4$ Identify numerals 0 to 1,000	$\mathrm{Ni} \ldots .5$ Identify numerals 0 to 1,000,000

Addition \& Subtraction* A	A__. 0 Count visible items to 20	$\text { A__. } 1$ Add or subtract using items (direct modeling)	$\text { A_. } 2$ Add by counting from 1 (no visible items)	$\text { A__. } 3$ Add by counting on; subtract by counting back	$\bar{A} \ldots .4$ Relate addition and subtraction	$\text { A_. } 5$ Add and subtract using a range of composite strategies	A__. 6 Extending and refining strategies for +/-

Structuring* S	$\text { S__. } 0$ Subitize quantities to 6	S_. 1 Facile structures to 5	$\overline{S _.2}$ Intermediate structures to 10	\qquad	$\overline{S . _.4}$ Intermediate structures to 20	S__. 5 Facile structures to 20

*Indicated strands align to Add+Vantage MR ${ }^{\circledR}$ (AVMR) Contructs and Levels.

Kentucky Numeracy Project Instructional Resources Numeracy Progressions

Numeracy Targets and Colors for each Strand and Level

Base Ten Arithmetical Strategies* T	$T \text { T_. } 0$ Emerging understanding that 2-digit numbers are composed of tens and ones	T__. 1 Solve 2-digit +/with materials by counting by 10s OR by 1 s	T__. 2 Solve 2-digit +/with materials using strategies based on place value	T__. 3 Beginning to solve 2-digit +/- without materials using strategies based on place value	$T \text { _. } 4$ Solve 2-digit +/without materials using a range of strategies	$\text { T__. } 5$ Solve 3-digit +/without materials using a variety of strategies	$\bar{T} \text { _. } 6$ Extending and refining efficient strategies for multi digit +/-

Multiplication and Division* M	M__. 0 No activities at the level	M__. 1 Build and share items into equal groups	M__. 2 Count equal groups using stress or skip counting	M__. 3 Count items arranged in equal groups with only group markers visible (items within groups are not visible)	M__. 4 Multiply and divide within 100 using counting strategies	M__. 5 Multiply and divide within 100 using a range of strategies	M__. 6 Extend and refine efficient strategies for multiplication \& division

Fractions F	F__. 0 Whole number foundations; introduce manipulative	F_. 1 Emerging partitioning (e.g. partitioning to create halves, thirds, etc.)	F_. 2 Facile partitioning (e.g. verifying a shape has been partitioned into fourths or eighths)	F_. 3 Beginning to understand a fraction as a measure, i.e. interpret $\frac{3}{4}$ as the size of 3 onefourth pieces.	$\bar{F} \ldots .4$ Understand a fraction as a measure	F_.. 5 Comparing fractions	F__. 6 Extend and refine fraction understandings

*Indicated strands align to Add+Vantage MR ${ }^{\circledR}$ (AVMR) Contructs and Levels.

Kentucky Numeracy Project Instructional Resources-u

Using Numeracy Progressions

KNP activities are organized into Task Groups, a set of 4-7 related activities aligned to a numeracy progression. All activities within a task group share the same 4 digit number task group ID number. The prefix indicates the instructional strand, and the suffix, indicates the level of the activity. Within a strand, all activities with the same level will also be the same color and comparable in complexity. The example below shows the progression of one task group in the Structuring Strand.

Activity ID \#	Color	Activity Name	Mathematical Task	
$\begin{aligned} & \mathrm{S} \\ & 2211.0 \end{aligned}$	Yellow	Pyramid (Match to 5)	Students match cards representing the same amount within 5 . Cards available include dot patterns, 5 frames, finger patterns, numeral, and word cards.	As the level number
$\begin{aligned} & \mathrm{S} \\ & 2211.1 \end{aligned}$	Red	Pyramid (Make 5)	Students match two cards with a sum of 5 . Cards available include dot patterns, 5 frames, finger patterns, numeral, and word cards.	increases, activities increase in
$\begin{aligned} & \mathrm{S} \\ & 2211.2 \end{aligned}$	Blue	Pyramid (Make 10, 10 frames)	Students match two cards with a sum of 10. Cards available include both a numeral and ten frame representation.	complexity. In this
$\begin{aligned} & \text { S } \\ & 2211.3 \end{aligned}$	Green	Pyramid (Make 10, numeral cards)	Students match two numeral cards with a sum of 10 .	example, note the increasing
$\begin{aligned} & \mathrm{S} \\ & 2211.4 \end{aligned}$	Purple	Pyramid (Make 20, double 10 frames)	Students match two cards with a sum of 20. Cards available include both a numeral and double ten frame representation.	number range and choice of
$\begin{aligned} & \mathrm{S} \\ & 2211.5 \end{aligned}$	Pink	Pyramid (Make 20, numeral cards)	Students match two numeral cards with a sum of 20.	-

NID - Numeral dentiffication				
Level 0	Level 1	Level 2	Level 3	Level 4
Needs to work on identifying numerals 0-10	Needs to work on identifying numerals 0-20	Needs to work on identifying numerals 0-100	Needs to work on identifying numerals 0-1000	Needs to work on identifying numerals 0-1,000,000
KNP \# \rightarrow Nf_ .0 and $\mathrm{Nf}_{\text {_ }} .1$	KNP \# \rightarrow Ni_- ${ }^{2}$	KNP \# \rightarrow Ni_ ${ }^{3}$	KNP \# \rightarrow Ni_ ${ }^{4}$	KNP \# \rightarrow Ni_-. 5

Structuring Numbers				
Level 0	Level 1	Level 2	Level 3	Level 4
Needs to work on: - Subitizing regular spatial patterns to 6 - Subitizing irregular spatial patterns to 5 - Building finger patterns 1-5 simultaneously - Combining numbers in range 1- 5 without counting - Partitioning numbers in range 1 5 without counting USE MATERIALS INITIALLY, THEN TRANSITION TO BARE NUMBERS TO FIVE	Needs to work on: - Subitizing regular spatial patterns in range 6-10 - Subitizing quantities 1-10 on ten frames - Creating simultaneous finger patterns in range of 6-10 -Combining AND partitioning numbers in range 6-10 in the context of a relevant setting (ten frame, arithmetic rack, etc.), without counting USE MATERIALS REMEMBER TO WORK ON BOTH FIVE-WISE AND PAIRWISE STRUCTURES WITHIN THESE TASKS	Needs to work on applying knowledge of structures of fivewise and pair-wise (five-plus and doubles) to: -combine numbers in range 110 without counting - partition numbers in range 110 without counting WORK AT THIS LEVEL CULMINATES IN BARE-NUMBER TASKS (WITHOUT SUPPORTING MATERIALS)	Needs to work on applying knowledge of ten-plus and doubles structures to: - combine AND partition numbers in range 1-20 in the context of a relevant setting (double ten frame, arithmetic rack, etc.), without counting USE MATERIALS REMEMBER TO WORK ON: - SUB-BASE OF FIVE \bullet-PAIR-WISE STRUCTURES -TEN-PLUS ASPECT OF TEENS	Needs to work on applying ALL aspects of structuring (structures of five, structures of ten, doubles, structures of tenplus) to: -combine AND partition numbers in range 1-20 without counting WORK AT THIS LEVEL CULMINATES IN BARE-NUMBER TASKS (WITHOUT SUPPORTING MATERIALS)
KNP \# \rightarrow S__. 0 and S _ . 1	KNP \# \rightarrow S_. 2	KNP \# \rightarrow S_-3	KNP \# \rightarrow S_. 4	KNP \# \rightarrow S_. 5

Kentucky Center for Mathematics

Conceptual Place Value (Base Ten Reasoning)

Construct 0	Construct 1	Construct 2	Construct 3	Construct 4-5
Needs to work on grouping items into 10 s ; counting by 10 s on the decade in the context of materials	Needs to work on counting by 10s on and off the decade in the context of materials (incrementing/ decrementing)	Needs to work on solving 2 digit addition and subtraction tasks with the gradual removal of materials; record mental strategies with notation	Needs to work on using varied mental strategies for solving 2 digit addition and subtraction tasks without materials; i.e. "can you solve in a different way?"	Needs to add and subtract 3 digit numbers using a range of mental strategies
$" 30,40,50,60, . . . "$	(a bundle is shown, then placed under the screen as counting continues) "31, 41, 51, 61, ..."		$\begin{array}{cc} \text { JUNP } & \begin{array}{c} \text { SPLIT- } \\ \text { JUMP } \\ \text { VEREMUMA } \\ \text { SPLT } \end{array} \\ & \text { TRANSFORM } \end{array}$	Put all of the skills together!
KNP \# \rightarrow T__. 0 and T	KNP \# \rightarrow T		KNP \# \rightarrow T	KNP \# \rightarrow T_

Multiplicatin and Division				
Construct 0	Construct 1	Construct 2	Construct 3	Construct 4-5
Needs to work on putting items in equal groups; sharing items equally	Needs to work on counting visible, pre-grouped items and associate stress and skip counting with quantities	Needs to work on counting groups of items where individual items are not visible	Needs to work on counting groups within a group of nonvisible items; different ways to break a whole group down without perceptual markers	Needs to work on recall or quick computation of basic mult/div facts; work on recognizing inverse relationship of mult/div and commutativity of mult
Work on stress or skip counting throughout				
"You have 20 cookies. If you shared them equally among five people, how many cookies would each person get?"	"How many dots all together?"	If you know that there are six rows of four dots, how many dots are there all together?"	"If you know that there are six rows of four dots, how many dots are there all together?"	"How many rows like this would you need to uncover to show 8 dots? What about 16? What about 32 ?"
$\xrightarrow[\text { KNP \# } \rightarrow \text { M_. } 0 \text { and M_. } 10]{ }$	KNP \# \rightarrow M__ ${ }^{2}$	KNP \# \rightarrow M__3	KNP \# \rightarrow M _ ${ }^{4}$	$\xrightarrow{\text { KNP \# } \rightarrow \text { M_. } 5 \text { and M_. } 6}$
				$\xrightarrow{+}$

Forward Counting

Yellow: I am learning to count forward to 10, starting at any number. Red: I am learning to count forward to 30, starting at any number.

Blue: I am learning to count forward to $\mathbf{1 0 0}$, starting at any number.
Green: I am learning to count forward to 1000, starting at any number.

Backward Counting

Yellow: I am learning to count backward, starting at any number in the range $\mathbf{1}$ to 10.
Red: I am learning to count backward, starting at any number in the range $\mathbf{1}$ to $\mathbf{3 0}$.
Blue: I am learning to count backward, starting at any number in the range $\mathbf{1}$ to 100.
Green: I am learning to count backward, starting at any number in the range 1 to 1000.

Numeral Identification (NID)

Yellow: I am learning to read numerals 1 to 10.Red: I am learning to read numerals 1 to 20.Blue: I am learning to read numerals 1 to 100.
Green: I am learning to read numerals 1 to 1000.
Purple: I am learning to read numerals 1 to 1,000,000.

Addition and Subtraction

Yellow: I am learning to count items I can see.Red: I am learning to add by counting two groups of items that I can see.Blue: I am learning to add items I can't see by counting from 1.Green: I am learning to count on to add. I am learning to count back to subtract.
Purple, Pink \& Orange: I am learning to use different strategies to add and subtract.

Structuring Numbers

Yellow: I am learning to subitize amounts up to 6 .Red: Facile to 5

- I am learning to immediately show amounts up to 5 on my fingers.
- I am learning to easily (fluently) add and subtract within 5.Blue: Intermediate to 10
- I am learning to quickly recognize amounts up to 10 (shown pair-wise or five-wise).
- I am learning to immediately show amounts up to 10 on my fingers.
- I am learning to add and subtract within 10 with support of materials such as dot card or fingers.Green: Facile to 10
- I am learning to easily say numbers that add together to make any number up to 10.
- I am learning to easily (fluently) add and subtract within 10.

Purple: Intermediate to 20

- I am learning to easily add doubles and near doubles to 20
- I am learning to easily add 10 to any number 1-10. I am learning to easily separate the numbers 11 to 20 into 10 and some more.
- I am learning to add within 20 with support of materials such as ten frames or a rekenrek.Pink: Facile to $\mathbf{2 0}$
- I am learning to easily (fluently) add and subtract within 20.

Place Value (Tens and Ones)

Yellow: I am learning to add or subtract (ones or groups of ten only) with materials within 100Red: I am learning to add or subtract within 100 with materialsBlue: I am learning to add or subtract within 100 without materials
Green: I am learning to add or subtract within 100 using lots of different strategies
Purple: I am learning to add or subtract within 1000 using lots of different strategies

Multiplication and Division

\bigcircRed: I am learning to share items into equal groups. I am learning to make equal groups. I am learning to describe items arranged into equal groups.Blue: I am learning to count items arranged into groups using stress or skip counting. Green: I am learning to figure out "how many" if items are arranged into groups and I can see the groups and not the items in the group.
Purple: I am learning to multiply and divide. I usually count to solve.
Pink and Orange: I am learning to efficiently multiply and divide. I use known facts, the inverse relationship between multiplication and division, and other strategies.

